

RESEARCH MEMORANDUM

EFFECTS OF REYNOLDS NUMBER ON THE AERODYNAMIC

CHARACTERISTICS OF A DELTA WING AT MACH

NUMBER OF 2.41

By John E. Hatch, Jr., and L. Keith Hargrave

Langley Aeronautical Laboratory
Langley Field, Va.

This document contains classified information affecting the National Personal Person

Information so absentiate officers and employees of the Federal Government who have a legitimate interest with a finite state of the United States citizens of known keysity and discretion who of necessity must be informed thereof.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

October 22, 1951

CONFIDENTIAL

519.98/13

		<u>일</u> 	
	:	2.	
			1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
man about 12 milassi			
Massa Land D. Dept of CHANG	Num # 105		Addison the second seco
Ey	6.12	. Tamb er of the second secon	
SRADE OF GLOBAL CHARLES	, , , , , , , , , , , , , , , , , , ,		
DATE	Elvel - - me	A Company of the Comp	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	<u></u>		· · · · · · · · · · · · · · · · · · ·

3 7 3

. :

ERRATA NO. 1

NACA RM L51H06

EFFECTS OF REYNOLDS NUMBER ON THE AERODYNAMIC CHARACTERISTICS OF A DELTA WING AT MACH NUMBER OF 2.41

By John E. Hatch, Jr., and L. Keith Hargrave

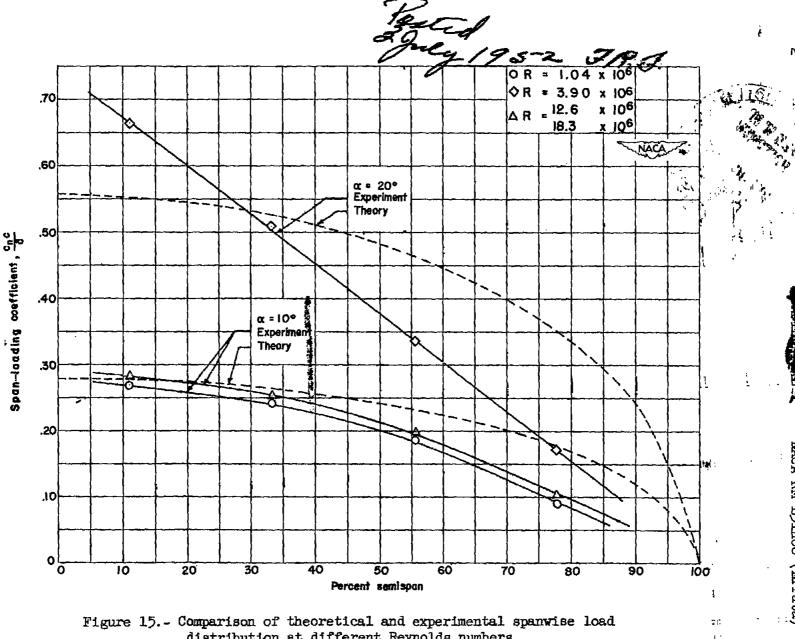

October 22, 1951

Figure 15 of this paper is in error and should be replaced with new figure 15 attached. This change also requires a revision in the text as follows:

Pages 13 and 14: Replace the last sentence beginning on page 13 and continuing on page 14 with the two following sentences:

"Up to about 100 angle of attack the spanwise load distribution was reasonably independent of Reynolds number. Outboard of the 40 percent semispan station of the wing at 100 angle of attack the experimental spanwise loading coefficients were considerably lower than predicted by the linear theory."

TATAL A

distribution at different Reynolds numbers.

1

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

THE RESERVE OF THE PARTY OF THE

RESEARCH MEMORANDUM

EFFECTS OF REYNOLDS NUMBER ON THE AERODYNAMIC

CHARACTERISTICS OF A DELTA WING AT MACH

NUMBER OF 2.41

By John E. Hatch, Jr., and L. Keith Hargrave

SUMMARY

The results of an experimental investigation to determine the effects of Reynolds number on the flow characteristics over a delta wing at a Mach number of 2.41 are presented. The wing streamwise airfoil sections are based on the NACA 00-thickness series with the maximum thickness varying from 4 percent at the root section to 6.24 percent at the 90-percent spanwise station. Force and pressure data for similar models having an aspect ratio of 1.57 were obtained over an angle-of-attack range at Reynolds numbers of 1.04×10^6 , 3.9×10^6 , 12.6×10^6 , and 18.3×10^6 .

The results showed negligible effects of a Reynolds number variation of 1.04×10^6 to 18.3×10^6 on the measured force characteristics over an angle-of-attack range from 00 to 60. For angles of attack from 6° to 20° , and increase of Reynolds number from 12.6×10^{6} to 18.3×10^{6} . likewise had no effect on the force data.

The results did show, however, a definite effect of Reynolds number on the flow and load distribution over the wing at angles of attack. On the upper surface an increase in Reynolds number from 1.04×10^6 to 12.6×10^6 delayed the formation of a separated region near the leading edge which terminated in a shock wave along a ray through the wing apex. On the wing lower surface the pressure coefficients over the forward 30 percent of the wing were increased as the Reynolds number varied from 1.04×10^6 to 12.6×10^6 . Because of the compensating changes in the upper-surface pressure distribution, the lift coefficients did not change with Reynolds number through an angle of attack of 60 as verified by the force data. As the Reynolds number was further increased from 12.6×10^6 to 18.3×10^6 no effect on the wing pressure distribution was evident.

INTRODUCTION

Much wind-tunnel test data on delta wings is now available. Various plan forms using many different airfoil sections have been tested over a range of supersonic Mach numbers up to about M = 3. Most tests, however, have been conducted at Reynolds numbers much lower than those realized by full-scale wings. The present investigation was undertaken to determine the effects of a large variation of Reynolds number (1.04 × 106 to 18.3 × 106) on the aerodynamic characteristics of a delta wing and is believed to be the first such comparison made for one wing at supersonic speeds over such a wide Reynolds number range. Another purpose of the investigation was to provide high Reynolds number data for the wing at angles of attack up to 200. A test Reynolds number of 18.3 × 106 corresponds to a wing with a mean aerodynamic chord of 10 feet at an altitude of 60,000 feet and a Mach number of 2.41.

The high Reynolds number data ($R = 12.6 \times 10^6$ and 18.3×10^6) were obtained in a Langley 9-inch blowdown jet of the Gas Dynamics Branch, and the low Reynolds number data were obtained in the Langley 9-inch supersonic tunnel. A description of the jet and the jet calibration are presented in the appendix of this paper.

SYMBOLS

Free-stream conditions:

Wing geometry:

S plan form

CONFEDENTIAL

b span

c wing chord, measured in direction of flight

$$\overline{c}$$
 mean aerodynamic chord $\left(\int_0^{b/2} c^2 dy / \int_0^{b/2} c dy\right)$

t thickness

angle of attack, degrees

x coordinate along free-stream condition

y spanwise coordinate

Pressure data:

p local static pressure

$$C_p$$
 pressure coefficient $\left(\frac{p - p_0}{q_0}\right)$

 $\Delta p/q_{O}$ lifting-surface pressure coefficient per degree angle of attack $\left(\frac{p_{l}-p_{u}}{q_{O}}\right)$

$$c_n c/\overline{c}$$
 span-loading coefficient $\left(\int_0^c \frac{C_p}{\overline{c}} dc\right)$

Force data:

$$C_{L}$$
 wing-lift coefficient $\left(\frac{\text{Lift}}{q_{o}S}\right)$

$$C_{D}$$
 wing-drag coefficient $\left(\frac{Drag}{q_{O}S}\right)$

 $\mathbf{C}_{\mathbf{M}}$ wing pitching-moment coefficient about wing centroid of area

 ΔC_D incremental-drag coefficient due to lift $(C_D - C_{Dmin})$

Subscripts:

u conditions on wing upper surface

conditions on wing lower surface

r value at root section

max maximum value

min minimum value

DESCRIPTION OF APPARATUS

Blowdown Jet

Jet.- The high-Reynolds-number tests were conducted in a Langley M=2.41 blowdown jet having a rectangular test section, 9 inches wide and $5\frac{3}{4}$ inches high. A drawing showing the general arrangement of the jet is presented in figure 1. A boundary-layer scoop, which exhausts to the atmosphere, is used to remove the boundary layer from just in front of the floor-mounted, semispan wing model. The jet has parallel sidewalls and had viewing windows covering the entire test section.

By varying the stagnation pressure in the settling chamber from 100 pounds per square inch absolute to 145 pounds per square inch absolute, the Reynolds number was varied from 12.6×10^6 to 18.3×10^6 . The final Mach number distribution in the jet test section is presented in figure 2. In this figure the wing model apex at an angle of attack of 0° is located at station 1.5 and the trailing edge is at station 11.5. The lip of the boundary-layer scoop is at station 1.0. A more complete description of the jet is given in the appendix.

Wing model. - The semispan wing models having an aspect ratio of 1.57 were constructed from steel. Streamwise airfoil sections are based on the NACA 00-thickness series which has its maximum thickness at 30 percent of the chord. The leading-edge radii were modified to average about 0.4 percent of the local chord. As shown in figure 3(a), the measured wing maximum thickness varies from 4 percent at the root to 6.24 percent at the 90-percent semispan station. A typical section is shown in figure 3(b).

Structural considerations required two pressure models in order to include all the desired pressure orifices (orifice locations tabulated in table I). Each wing had two rows of chordwise pressure orifices which resulted in four spanwise pressure stations for the basic wing. Figure 4 shows the semispan wing geometry and the locations of the chordwise pressure stations. A third model was constructed for the force tests. Each model was constructed to within ±0.001 inch of the specified ordinates.

Langley 9-Inch Supersonic Tunnel

Tunnel. The low Reynolds number data were obtained in the Langley 9-inch supersonic tunnel. This tunnel is a single-return, direct-drive type in which the pressure and humidity of the enclosed air can be controlled. The tunnel has recently been repowered and the stagnation pressure can now be regulated between 0.2 and 4.3 atmospheres at a Mach number of 2.41. A Mach number distribution in the test section of 2.41 ± 0.015 was determined for the stagnation pressure range of 1 to 4 atmospheres. Throughout the tests the amount of water vapor in the tunnel air was kept at sufficiently low values to insure negligible effects of condensation in the test section.

Wing model and support system. The full-span model was constructed of brass. The section shapes varied slightly from those of the semispan model due to fabrication error (see fig. 3). After the force tests were completed, pressure tubes were installed in the model along the same spanwise stations as those in the semispan model.

As shown in figure 5, the full-span model was mounted from the rear on a very slender tapered sting support. An identical support arrangement is described in detail in reference 1 in which tests were made to determine the lift and drag of the sting alone. It was found that the lift force was negligible, and that the drag force was almost constant with angle of attack. At a Mach number of 2.41 the sting gave a drag coefficient of approximately 0.0005 based on the wing area of the present tests. The magnitude of the drag coefficient contributed by the sting to the wing-sting combination is doubtful, but it was probably somewhat less than the 0.0005 value since some of the frontal area of the sting was buried in the wing and most of the sting was immersed in the boundary-layer flow of the wing.

TESTS AND PRECISION

Force measurements on the semispan model were obtained by a three-component strain-gage balance system over an angle-of-attack range from 0° to 20° in increments of 2° . Pressure data were also obtained at the same angles at a Reynolds number of 12.6×10^{6} , but the maximum angle of attack obtainable was 16° at a Reynolds number of 18.3×10^{6} . Both force and pressure data were recorded photographically.

Since pressure orifices were installed on only one surface of each wing, the models were set at positive and negative angles of attack in order to obtain pressures on both the upper and lower surfaces at any one angle of attack.

Pressure data for the full-span model were obtained over an angle-of-attack range from $0^{\rm O}$ to $10^{\rm O}$ in increments of $2^{\rm O}$. Force data were obtained for angles of attack from $0^{\rm O}$ to $6^{\rm O}$ in increments of $1^{\rm O}$. The angle of attack was obtained by initially referencing the wing in the tunnel with respect to the tunnel center line and then using an optical system for relative angles of attack.

The liquid-film method was used in the low Reynolds number tests to supplement the pressure distributions in the study of the flow over the wing. This method was the same as that used and described in reference 1. The model was given a black finish before applying the liquid film solution. Upon completion of a run, the wing was dusted with white powder. Accordingly, the wet (low shear) regions appear white and the dry (high shear) regions remain black.

In order to compare the force data for the wing-sting combination with the force data for the floor-mounted semispan model, it was necessary to correct the full-span model drag coefficient to account for the base drag of the sting. The pressure in the movable windshield and balance box was controlled at approximately free-stream pressure; therefore, the base drag correction was very small.

Because of the presence of the pressure tubes downstream of and near the trailing edge of the wing, the pressure readings for the orifices located 5 percent of the root chord from the trailing edge are of doubtful accuracy.

To understand better the wing-flow characteristics, a method was devised to determine the local flow direction over the upper surface of the full-span wing at angles of attack. Small, symmetrical, free-floating vanes were installed on the full-span wing at 15 different locations. Figure 6 shows the physical dimensions of the vanes as well

as the vane locations on the wing surface. The vanes were so located on the wing during each run that no interference effects between vanes were possible.

The angles through which the vanes were turned at each wing angle of attack were read by means of a cathetometer mounted outside of the tunnel. The accuracy of measurement of the indicated flow angles is estimated at $\pm \frac{10}{2}$.

The estimated probable error in the aerodynamic coefficients for the two models are as follows:

Model	a (deg)	C ^T	$\mathtt{C}_{\mathtt{D}}$	$C_{\mathbf{M}}$	C _p	R	М
Full Span		±0.0002	±0.0002	±0.0002	±0.0050 ±0.0015	1.04 × 10 ⁶ 3.90 × 10 ⁶	2.41 ± 0.015
Semispan	±0.10	±0.0030	±0.0006	±0.0003	±0.0040 ±0.0026	12.6 × 10 ⁶ 18.3 × 10 ⁶	

The probable error in angle of attack of the full-span wing is ±0.07° in the initial reference of the model with respect to the tunnel center line and ±0.03° in relative angle of attack.

RESULTS AND DISCUSSION

Force Data

A comparison of the force data for the semispan, floor-mounted wing at Reynolds numbers of 12.6×10^6 and 18.3×10^6 with the data for the full-span, sting-supported model at a Reynolds number of 1.04×10^6 is presented in figure 7. The theoretical lift curve as determined from the linear theory is plotted for comparison. Pitching moments are taken about the centroid of plan-form area, with the wing mean aerodynamic chord as the reference length. Within experimental accuracy, the force data at negative angles of attack and positive angles of attack are the same. As a result, only the data for positive angles of attack are shown.

<u>Lift.</u>- The experimental lift curve for the high Reynolds number tests is linear up to about an angle of attack of 10°. From angles of

attack of 10° to 20°, there is a slight decrease in the lift-curve slope. The low Reynolds number tests also show the linearity of the lift curve up to an angle of attack of 6°, the extent of the test range. The experimental lift-curve slope through zero lift is about 0.025 per degree; whereas the theoretical value of the lift-curve slope calculated by the method of reference 2 is 0.0295 per degree.

A comparison of the wing-lift curves at the two Reynolds numbers indicates that, within the experimental accuracy of the tests, the Reynolds number has no effect on the wing-lift coefficients over the angle-of-attack range covered by the comparison, 0° to 6°.

Pitching moment. The pitching-moment coefficients as shown are taken about the wing center of area. Through the common range of angle of attack, 0° to 6° , the data obtained at the two test Reynolds numbers are approximately the same and indicate a center-of-pressure location close to the center of wing area which agrees with theory. The data obtained at the Reynolds numbers of 12.6×10^{6} and 18.3×10^{6} for an angle of attack from 6° to 20° show a forward shift of the center of pressure with increasing lift. At an angle of attack of 20° , the center of pressure moved to a point 3.4 percent of the mean aerodynamic chord ahead of the wing center of area.

Drag. - Within the experimental accuracy of the test procedures, the wing-drag data obtained at each Reynolds number agreed over the common angle-of-attack range from 0° to 6°. Over the complete angle-of-attack range for the tests at both Reynolds numbers, the drag-rise factor $\Delta C_D/C_L^2$ is approximately equal to the reciprocal of the lift-curve slope and implies practically no leading-edge suction force.

A minimum drag coefficient of 0.0095 was obtained from both tests. It would be expected that a lower minimum drag coefficient would be obtained from the tests at a Reynolds numbers of 1.04×10^6 than from the high Reynolds number tests since the flow over the wing will be largely laminar at the low Reynolds number; whereas turbulent flow would probably exist over most of the wing at a Reynolds number of 18.3×10^6 . In order to compare the two minimum drag-coefficient values, however, the contribution of the sting to the full-span-configuration drag coefficient (approx. 0.0004) would have to be substracted from the 0.0095 value.

A wing pressure drag coefficient at zero lift of 0.0058 was determined from the high Reynolds number pressure-distribution data. Subtraction of this value from the minimum drag coefficient gives a friction-drag coefficient of 0.0037. This result compared with a value of 0.0040 for the compressible turbulent friction-drag coefficient as obtained from extrapolated experimental data of reference 3.

Constitution III

2

Less complete low Reynolds number pressure-distribution data estimates the same pressure drag coefficient at zero lift as that obtained from the high Reynolds number data. Subtraction of this value and the 0.0004 sting contribution from the minimum drag coefficient gives a friction-drag coefficient of 0.0033 for the wing at a Reynolds number of 1.04×10^6 . This value compares with an incompressible skin-friction coefficient of 0.0026. The larger experimental viscous drag coefficient could be the result of separated flow, a small region of turbulent flow, or a higher than estimated sting drag contribution.

<u>Lift-drag ratio</u>. - A maximum lift-drag ratio of 6.4 was obtained by the wing at an angle of attack of approximately 5°.

From a comparison of the force data obtained for the wing at Reynolds numbers of 1.04×10^6 and 18.3×10^6 , it is evident that Reynolds number has little effect on the wing-force coefficients over the angle-of-attack range covered by the comparison, 0° to 6° .

Pressure-Distribution Data

The greatest effects of Reynolds number on the aerodynamic data for this delta wing were found in the pressure distributions. Although differences in the pressure distribution were readily apparent as the Reynolds number varied from 1.04×10^6 to 12.6×10^6 , the pressure data were the same for Reynolds numbers of 12.6×10^6 and 18.3×10^6 up to angles of attack of 16^0 . Only representative data which show the effects of Reynolds number are plotted in this paper. Complete pressure data for the wing at each angle of attack for each Reynolds number investigated, however, are presented in table I.

<u>Upper Surface</u>. The data of the present investigation show the presence of spanwise pressure discontinuities on the wing upper surface beginning at about an angle of attack of 4° at a Reynolds number of 1.04×10^{6} and at about an angle of attack of 10° at a Reynolds number of 12.6×10^{6} and 18.3×10^{6} .

For example, figure 8 shows the spanwise variation of pressure coefficient at the 90-percent root-chord station. At an angle of attack of 6° , the data for a Reynolds number of 1.04×10^{6} show that a separated region of approximately constant negative pressure exists near the leading edge which terminates in an abrupt pressure jump at about the 40-percent semispan station. The high Reynolds number data indicate no such pressure discontinuity at this angle of attack. As the angle of attack is increased to 10° , however, the pressure jump occurs even at the highest

Reynolds number. From other spanwise pressure plots taken at diffferent chordwise stations it is possible to determine that the pressure jump, which exists on the upper surface, lies approximately along the ray $\frac{y}{y} = 0.17$.

The strong resemblance of the present pressure data to that of reference 4 indicates that the pressure discontinuities could be the result of shock waves on the upper surface of the wing. Unpublished work by Clinton E. Brown of the Langley Laboratory indicated the existence of shock waves on the upper surface of delta wings at angles of attack even when the leading edge is swept well behind the Mach cone. The data of reference 5 also show the existence of shock waves normal to the wing surface, but oblique to the supersonic stream.

In the present investigation, if the jump in pressure were caused by a shock wave then the component of local Mach number normal to the ray along which the pressure jump lies would have to be supersonic. The results of the vane survey showed that, for wing angles of attack of 6° , 8° , and 10° , the flow over the upper surface was turned toward the root chord a sufficient amount to result in the component of flow normal to the ray $\frac{y}{x} = 0.17$ to be supersonic. It was therefore concluded that the pressure discontinuity on the present wing represented a shock wave.

The vane-survey results at a wing angle of attack of 10° and a Reynolds number of 1.04×10^6 are shown in figure 6. The table (fig. 6) gives, for each vane location, the angle in degrees through which the flow is turned from the free-stream direction and the local Mach number as computed from the pressure data. Positive angles indicate that the flow is turned toward the root chord. Local Mach numbers at vane positions 2 and 5 could not be calculated because of the absence of pressure tubes in the vicinity of these vane positions. The vectors at vane positions 2 and 5 are, therefore, shown by dashed lines. Figure 6 further shows that behind the shock wave the vanes indicate that the flow has turned back to a direction approximately parallel to the free stream.

It may be noted from figure 6 that the vanes were mounted 0.125 inch above the wing surface. This 0.125-inch height was selected as a result of systematic tests to determine the effect of the height of the vane above the wing surface on the indicated flow angles. When mounted 0.07 inch above the wing surface the vanes were well in the wing boundary layer, and for angles of attack above 6° the vanes outboard of the ray $\frac{y}{x} = 0.17$ indicated that the flow in the boundary layer was turned away from the root chord toward the low-pressure area at the wing tip.

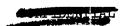
When raised to a height of 0.125 inch above the wing, the vanes indicated that the flow outboard of the ray $\frac{y}{x} = 0.17$ was turned toward the root chord. As the height was increased further to 0.30 inch, the indicated flow angle was somewhat less than the maximum indicated flow angle. It is not expected that one particular vane height above the wing surface will give the true flow direction at each vane location. It was felt, however, that the 0.125-inch height, in general, gave a good indication of the flow direction over the wing surface.

The variation of the indicated flow angles across the span at the 70-percent root-chord station with wing angle of attack is shown in figure 9(a), and figure 9(b) shows the vane locations on the wing profile at the 70-percent root-chord station. It is significant that the abrupt change in the indicated flow angles occurs at the location of the ray along which the pressure discontinuity occurs. Insufficient pressure data across the span at this station, however, does not permit a complete correlation of pressure data and vane-survey data.

At each chordwise station the formation of the shock wave along the ray $\frac{y}{x} = 0.17$ was delayed to a higher angle of attack with each increase in Reynolds number. As the angle of attack was increased to 16° at high Reynolds numbers, the shock wave continued to exist but, as shown by figure 10, its location moved inboard with each increasing angle of attack. As the angle of attack was increased to 20° , the presence of the shock wave is no longer evident at the 90-percent-root-chord station. Spanwise pressure distributions at the 60-percent and 70-percent root-chord stations, however, show that even at an angle of attack of 20° a shock wave continues to exist on the wing, but its inboard movement with angle of attack stops at about $\alpha = 16^{\circ}$.

Liquid-film pictures taken at a Reynolds number of 1.04×10^6 are presented in figure 11 to further show the location and development of the pressure jump on the upper surface of the wing. As the wing angle of attack is increased from 0° to 10° the development of the disturbance (high shear) area is evident.

It has been indicated in reference 5 that the formation of a similar shock wave on the upper surface of two delta wings investigated at supersonic speeds was primarily a function of the Mach number of the flow component perpendicular to the swept leading edge and the shape of the airfoil in the vicinity of the wing leading edge. The data of the present investigation, however, show that the formation of the shock wave also varies with Reynolds number and is, therefore, greatly dependent upon viscous effects.


Transfer in a

This shock-wave formation on the surface of delta wings appears to be very complex and probably involves several variables, such as, leading-edge profile, Mach number, Reynolds number, and thickness distribution. At the present time, no single variable is known to be the controlling factor in the formation of the shock wave.

Examination of chordwise plots of the pressure data at Reynolds numbers of 12.6×10^6 and 18.3×10^6 shows the presence of a curved shock wave near the wing leading edge lying essentially along the ray $\frac{y}{x} = 0.3$. The shock wave is first formed at about $\alpha = 6^{\circ}$ and exists up to a wing angle of attack of 12° . Above an angle of attack of 12° the presence of this shock wave is no longer evident. The data obtained at a Reynolds number of 1.04×10^6 does not show the presence of the shock wave through an angle of attack of 10° . At a Reynolds number of 3.9×10^6 the existence of the shock wave is evident only at an angle of attack of 6° . The effects of Reynolds number on this shockwave formation near the leading edge is not clear since the upper-surface pressure distribution over the wing near the leading edge does not consistently vary with Reynolds number.

Since a large change in Reynolds number changed the flow characteristics over the wing, any downwash survey made behind the wing would be affected by a large variation in Reynolds number. It would also be expected that the effectiveness of control surfaces located at the tip and at the trailing edge would vary with a large Reynolds number change since the separated region first begins at the tip and moves toward the wing apex and root chord with increasing angle of attack.

Lower surface .- On the wing lower surface there was also found a definite variation of pressure distribution with a change in Reynolds number. Figure 12 shows the chordwise variation of pressure coefficients for the 55.5-percent semispan station for angles of attack of 20, 60, and 100 at each Reynolds number. Forward of about the 30-percentchord station, the pressure-distribution curves are shifted in a positive direction as the Reynolds number is increased from 1.04×10^6 to 12.6×10^6 . As the Reynolds number was further increased to 18.3×10^6 no additional displacement of the curves is evident. The displacement of the lowersurface pressure-coefficient curves indicates that the section stagnation point moves rearward with an increase in Reynolds number. The increase in pressure coefficient over the forward part of the lower surface alone would result in a higher lift coefficient at any angle of attack for the high Reynolds number tests. Because of the compensating changes in the upper-surface pressure distribution, however, the lift coefficients did not vary with Reynolds number through the compared angle-of-attack

range of 0° to 6°, as verified by the force data. From about the 30-percent-local-chord station to the trailing edge, the pressure-distribution curves for the wing lower surface show no significant difference for the different Reynolds numbers.

It is felt that the changes in pressure distribution which occur with a change in Reynolds number are not a result of elastic deformation of the different models due to air loads. If the wing models had deflected, the chordwise pressure distributions on both the upper and lower surfaces would be affected. On the wing lower surface through a wing angle of attack of 10° the pressure distribution varies only over approximately the forward 30 percent of the airfoil, as shown by figure 12. Over the remaining 70 percent of the airfoil where the greatest deformation should occur (the thinnest part of the wing), the pressure distributions are about the same for each Reynolds number for any one angle of attack. It was, therefore, concluded that the differences in pressure distribution which existed with a change in Reynolds number were not a result of elastic deformation of the wing.

Loading .- Since differences have been shown to exist for the upperand lower-surface pressure distributions as a result of a large variation of Reynolds number, it is of interest to determine the effects of Reynolds number on the over-all loading of the wing. Figure 13 shows the distribution of experimental loading coefficients per degree angle of attack for $\alpha = 10^{\circ}$. At the 11.1-percent semispan station the loading coefficients at a Reynolds number of 1.04×10^6 indicate an abrupt decrease in loading at the position of the shock wave which exists on the wing upper surface; whereas the loading for the other Reynolds numbers at this station show good agreement over the entire chord. The influence of the shock wave on the loading coefficients at the 33.3-percent semispan station is evident by the sudden decrease in loading at about the 65-percent-chord station. At the 33.3 and 55.5-percent semispan stations there is a definite trend of higher loading coefficients with an increase in Reynolds number over about the forward 30 percent of each station. In moving outboard to the 77.7-percent semispan station the same general trend of higher loading coefficients with increasing Reynolds number is again evident, but the differences are small and occur over the rearward part of the chord.

As the angle of attack was increased from 10° to 20° the loading coefficients at high Reynolds numbers varied as shown in figure 14.

The departure from theory of the over-all experimental loading at high angles of attack is presented in figure 15, which shows the variation of span-loading coefficient as obtained from the integrated pressure distribution at each chordwise station. Up to about 100 angle of attack the spanwise load distribution agreed fairly well with the REASONABLY IN DEFENDENT

O VALUE OF THE PARTY OF THE PAR

linearized theory at each Reynolds number even though differences were found to exist with Reynolds number at each spanwiss station. At higher angles of attack the loading across the span continued to depart from the five until at an angle of attack of the variation of section in manual-force specificient became practically linear. This innear variation of spanwise loading at high angles of attack has also been observed in unpublished data obtained from the Langley 9-inch supersonic tunnel for a delta wing composed of symmetrical double-wedge sections, 10 percent thick, investigated at angles of attack from 0° to 52°, at M = 2.41, and a Reynolds number of 520,000. From these investigations it would seem that, for delta wings at high angles of attack,

the spanwise load distribution.

CONCLUSIONS

airfoil shape and thickness distribution has practically no effect on

From the experimental investigation to determine the effects of Reynolds number on the flow characteristics over a delta wing at a Mach number of 2.41 the following conclusions may be made:

- 1. Over an angle-of-attack range from 0° to 6° a change in Reynolds number from 1.04×10^{6} to 18.3×10^{6} had no significant effects on the measured force characteristics. For angles of attack from 6° to 20° an increase in Reynolds number from 12.6×10^{6} to 18.3×10^{6} likewise had no effect on the force data.
- 2. The results did show, however, a definite effect of Reynolds number on the flow over the wing at angles of attack. On the upper surface an increase in Reynolds number from 1.04×10^6 to 12.6×10^6 delayed to a higher angle of attack the formation of a separated region near the leading edge which terminated in a shock wave along a ray through the wing apex. As the angle of attack was increased to 20° at high Reynolds numbers the shock wave continued to exist.
- 3. On the lower surface the pressure coefficients over the forward 30 percent of the wing were increased as the Reynolds number varied from 1.04×10^6 to 12.6×10^6 . Because of the compensating changes in the upper-surface pressure distribution the measured lift coefficients did not vary with Reynolds number through the compared angle-of-attack range of 0° to 6° .

CONFIDENTIAL

4. For an angle-of-attack range from 0° to 16° , an increase in Reynolds number from 12.6×10^{6} to 18.3×10^{6} had no effect on the wing pressure distribution.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.

APPENDIX

DESCRIPTION OF BLOWDOWN JET

The supersonic nozzle section of the jet was designed by the method of characteristics to produce a uniform flow at M=2.41 in the test section. Boundary-layer displacement thickness along the supersonic nozzle was computed by the method of reference 6. The same boundary-layer displacement thickness was assumed to exist along the sidewalls, and the combined boundary-layer correction was applied to the theoretical nozzle ordinates.

Strain-gage balance system. Force data were obtained by a three-component strain-gage balance system. The balance system rotated with the wing model and at each angle of attack measured normal force, chord force, and pitching moment. The pitching moment was measured about the 50-percent root-chord station.

The balance was temperature-compensated and calibrated to determine interaction effects between components. Interaction effects were so small that they could not be recorded on the scales. Each force component on the balance was transmitted to a separate single-channel self-balancing Brown potentiometer. The force data were recorded photographically.

Angle-of-attack mechanism. The floor-mounted models were attached to a turntable which was rotated over a wing angle-of-attack range of 120° by a remotely-controlled electric motor. The wing angle of attack was measured by means of an electrical slide wire resistor attached to the turntable transmitting its reading to a single-channel self-balancing Brown potentiometer. Each angle of attack was checked by means of a protractor assembly mounted on the jet test section and turntable. Before each series of tests, the zero angle of attack was carefully estabilished from a previously determined reference plane.

JET CALIBRATION

The Mach number distribution throughout the jet test section was determined by means of a static tube rake survey. The rake was so mounted that the five static tubes were in a vertical plane. A survey was made along the test-section center line (in increments of 1 in.) as well as along one transverse station $2\frac{1}{4}$ inches on each side of the jet center line. At each station the Mach number was determined

CONFIDENTIAL

3

from the ratio of free-stream static pressure to the settling-chamber stagnation pressure.

The final test-section Mach number distribution is shown in figure 2. In front of the shock wave formed by the boundary-layer scoop, the Mach number is 2.43 ± 0.01 , and behind the shock wave caused by the scoop (in the region occupied by the wing model) the Mach number is 2.41 ± 0.015 . Uniform flow existed in the test section for a distance of 13 inches. The jet calibration was conducted at a stagnation pressure of 115 pounds per square inch absolute which would result in a Reynolds number of 2.17×10^6 per inch.

All calibration tests were conducted in a range of stagnation dewpoints which eliminated any effect of condensation.

During the jet calibration, a disturbance was found to originate at the joint between the turntable and the test-section floor, even though the maximum difference in level between the two surfaces was approximately ±0.002. The disturbance caused a change in Mach number of ±0.03 in the test section and was detected by the static rake during the longitudinal survey of the jet. The disturbance was eliminated by spraying the jet floor and turntable with surfacing putty and polishing the resulting continuous surface to a high gloss. The smoothness of the surface was maintained during all calibration tests and wing tests.

Throughout the testing program the scoop edge was kept sharpened to a knife edge to reduce the strength of the shock wave formed at the lip of the scoop. From the jet calibration, it was determined that the loss in Mach number across the shock wave at the scoop is 0.02.

18

REFERENCES

- 1. Love, Eugene S.: Investigations at Supersonic Speeds of 22 Triangular Wings Representing Two Airfoil Sections for Each of 11 Apex Angles. NACA RM L9D07, 1949.
- 2. Brown, Clinton E.: Theoretical Lift and Drag of Thin Triangular Wings at Supersonic Speeds. NACA Rep. 839, 1946. (Formerly NACA TN 1183)
- 3. Wilson, R. E., Young, E. C., and Thompson, M. J.: 2nd Interim Report on Experimentally Determined Turbulent Boundary-Layer Characteristics at Supersonic Speeds. CM 501, The John Hopkins Univ. Appl. Phys. Lab., Jan. 1949. (Univ. Texas, Defense Research Lab.)
- 4. Daley, Bernard N., and Lord, Douglas R.: Aerodynamic Characteristics of Several 6-Percent-Thick Airfoils at Angles of Attack from 0° to 20° at High Subsonic Speeds. NACA RM 19E19, 1949.
- 5. Boyd, John W., and Phelps, E. Ray: A Comparison of the Experimental and Theoretical Loading over Triangular Wings at Supersonic Speeds. NACA RM A50J17, 1951.
- 6. Tetervin, Neal: Approximate Formulas for the Computation of Turbulent Boundary-Layer Momentum Thicknesses in Compressible Flows. NACA ACR L6A22, 1946.

TABLE I .- EXPERIMENTAL PRESSURE COEFFICIENTS

					R	= 1.04	× 7.06										R = 3.9	90 × 10 ⁶	;	-0709 .1184 -1029 .1592 -0816 .10380899 .14000779 .10350874 .14060819 .08280916 .11720791 .08460889 .1190										
Stat	tion	α = 0d α = 5ο		α× γ ^o		G. =	6º	α,	- 8º	G. =	a = 10°		a = 20		a = 4°		a = 6°		a = 8°		a = 10°									
<u>₽</u> /2	Par- cent	o _p	a _{pa}	c _{pt}	c _{pa}	a _{p1}	C _{Pu}	$a^{\mathbf{p}^{\mathbf{l}}}$	c _{pu}	Opį	0 _{Pa}	c _p ,	G _p	Cpu	G _{P ≀}	Срц	o _p ,	C _{Pu}	c ^b	Cpu	o _P ,									
om.	45.4	0.0400 .0259 .0024 0059 0129 0188 0188 0188 0282	0.0071 0047 0223 0306 0329 0400 0494 0506 0647	.0506 .0235 .0118 .0082 0012 0012	0400 0470 0506 0541 0541 0623	.0788	-0.0459 0506 0658 0670 0647 0647 0647	.1093 .0788 .0658 .0564 .0459	-0.0823 0799 0870 0858 0823 0764 0741 0741 08111	1423 1093 0941 0858 0729 0741 0717	11288 11288	.1740 .1423 .1270 .1187 .1035 .1011 .1011	-0049 -0082 -0073 -0195 -0195 -0195	0259 0362 0320	.0478 .0286 .0146 .0152 .003	035 0508 0508 0545 0511 0527 0633	.0557 .0414 .0414 .0240 .0271 .0216	0539 0658 0667 0627 0679 0654 0676	0864 0718 0715 0717 0517	0953 0709 0816 0779 0819 0804 0834	.1461 .1184 .1038 .1035 .0826 .0846 .0758	1355 1029 0989 0874 0916	.1851 .1592 .1400 .1406 .1172							
0.333	33.2 57.0 72.0 84.9	0.0247 -01.65 -0235 -0247 -0906 -0906 -0447	0.0176 ~.0517 ~.0541 ~.0517 ~.0635 ~.0553 ~.05761	.0106 0 0012 0094 0129 0188	- 0752 - 0694	0335 0306 0270 0341 0106 0035	-0.0999 -1011 -1010 -0929 -0764 -0811 -0929	.0741 .0600 .0553 .0376 .0329	-0.1364 1305 1364 1317 0788 0905 1011	.1070 .0905 .0858 .0647 .0600	- 1634 - 1693 - 1023 - 0988		0280 0216 0323 0338	0575 0563 0460 0530	- 0016 - 0012 - 0055 - 0097 - 0135 - 0204	~ 0883 ~ 0898 ~ 0740 ~ 0651 ~ 0712 ~ 0724	.0292 .0356 .0140 .0061	- 1196 - 1242 - 1099 - 0858 - 0849 - 0861	0.1297 .0782 .0624 .0664 .0426 .0323 .0253	- 1571 - 1632 - 1644 - 0971 - 0925 - 0947	.0947 .0998 .0697 .0600	1881 1811 1848 1775 1702 1333 1001 1087	0.1979 .1540 .1333 .1385 .1050 .0916 .0816							
Q. 5 55	14.1 27.6 42.1 66.3 77.3 88.8	~.0261 ~.0457 ~.0504 ~.0527 ~.0539 ~.0691	-0,0410 0703 0796 0867 0831 0796	- 0164 - 0269 - 0340 - 0351 - 0492	1089 1089 1148 1171 1183	04.57 00.87 0047 - 0059 - 0105 - 0269	-0.1335 1452 1362 1429 1511 1544 1581	0820 0527 0363 0211 0152 - 0012	- 1721 - 1686 - 1710 - 1780 - 1792 - 1827	.0855 .0667 .0492 .0433 .0222	- 1838 - 1827 - 1862 - 1909 - 1909 - 1967	0.1874 1534 .1194 .0995 .0785 .0726 .0480		- 0845 - 0767 - 0756	0.0451 .0067 -0131 -0250 -0296 -0302 -0442	- 1223 - 1369 - 1318 - 0985 - 0924	.0058	- 1586 - 1668 - 1665 - 1388 - 1220	0.1263 .0885 .0601 .0375 .0244 .0214	- 1751 - 1729 - 1800 - 1821 - 1754	.1275 .0964 .0720 .0552 .0500	- 1995 - 1922 - 1937 - 1989 - 1940 - 1937 - 1973								
ሴ ንፖን	22.3 33.6	0.0246 ~.0632 0785 0843 0925	-0.078; 107; 1206 119; 1183	- 0433	-0.1206 1417 1452 1393 1370	0012 0234	-0.1663 1745 1686 1616 1593	.0574 .0340 .0094	0.1920 1920 1850 1792 1793	•0925	- 2002 - 1932 - 1909	1268 1268 1030 0679	0906	0805 - 1129 - 1281 - 1379 - 1339	0195 0388 0509	- 1336 - 1531 - 1610 - 1702 - 1706	.0238 .0024 0207	1909 1961 1922	0653 0406 0116	- 2010 - 1958 - 1952 - 1952 - 1983	0790 0433	- 2074 - 2059 - 2059 - 2074 - 2101	0.1766 .1409 .1138 .0759 .0515							

										B + 19	6 x 10	6										
54	ri.ion	a = 00	a.	- 2º	Q, ı	Po	α-	60	α-	9 o	α =	10 ⁰	a. •	120	α=	140	a.≟	16°	α-	18°	-	20°
y b/2	Per-	o _p	Open	a _{p/}	C _{Ptt}	Op,	Cpa	c ^{b√}	σ _{pet}	c _{p(}	C _{Pa}	g _{P2}	0 _{Pir}	$\sigma_{\mathbf{p}_{\hat{l}}}$	o _{pa}	o _{p≀}	C ^{Der}	o _{P l}	Cbe	Cp ,	C _{Pet}	Op,
0.111	0 3.8 7.3 10.6 14.2 17.5 21.2 24.2 21.7 38.2 43.7 49.2 55.0 50.7	0, 2216 .0620 .0345 .0162 .0070 .0052 .0053 .0062 0040 0055 0059 0059	0.2128 .0369 .0151 .0162 .0199 .0153 .0153 .0153 .0153 .0153 .0254 .0354 .0354		0.1897 -0007 -0026 -0072 -0099 -0081 -0060 -0040 -0525 -0523	0.2181 1362 1017 .0654 .0606 .0527 .0451 .0454 .0450 .0255 .0218	0355 - 0503 - 0503 - 0505 - 05	0.1770 11735 11104 1032 0960 0734 0708 0654 0456 0456		0.1688 .2067 .1616 .1364 .1111 .1219 .1039 .1039 .0985 .0895 .0804 .0732 .0714 .0714	0.7177. 1.0963. 1.0963. 1.0963. 1.0963. 1.0963. 1.0963. 1.0963. 1.0963. 1.0963. 1.0963. 1.0963.	.2408 .1829 .1798 .1602 .1402 .1393 .1348 .1294 .1221 .1031 .1031 .1022			1619 1172 11490 11	0.0820 .3256 .2762 .2588 .2450 .2331 .2148 .2111 .2057 .1956 .1873 .1736 .1718	0.0850 -1786 -1772 -1604 -1658 -1695 -1713 -1677 -1478 -1147 -1147 -1166	0.0499 .3836 .3401 .3068 .3050 .2883 .2643 .2606 .2514 .2440 .2255 .2209 .2181	- 1838 - 1838 - 1837 - 1930 - 1965 - 1946 - 1655 - 1472	0.0254 .4252 .3814 .3513 .3549 .3348 .3102 .2938 .2910 .2746 .265 .265 .265 .265 .265 .265 .265 .26	- 1900 - 1903 - 2036 - 2067 - 2060 - 1868 - 1750 - 1662	-0.0033 -4807 -4431 -4036 -4063 -3873 -3613 -3567 -3476 -3476 -3476 -3182 -3182 -3108 -3108 -3108
	71.7 77.5 83.2 88.7 94.0	0205 0242 0225	- 0137 - 0361 - 0192	0221	0597 0615 0615 0642 0759	.0146 .0109 .0128 0036 0072	0702 0739	.051 .029 .0347	0757 - 0804 - 0794 - 0841 - 0841	.0606 .0534 .0552 .0389 .0353	0943 0961 0960 0980 0998	.0877 .0922 .0849 .0732 .0550	- 0853 - 0869 - 0907 - 1108	.1255 .1336 .1161	~1105 ~1142 ~1160 ~1179 ~1197	.1562 .1599 .1507 .1388 .1132	1220 1257 1275 1293 - 1293	,1996	~1399 ~1417 ~1417 ~1435	.2371 .2408 .2508	- 1500 - 1493 - 1406 - 1752 - 1752	.2686 .2576 .2933 .2612 .2263
0.993	4.6 9.2 14.7 23.2 28.2 40.2 47.5 55.0 77.5 55.0	- 049 - 049 - 019 - 017 - 0178 - 022 - 034 - 034 - 037 - 037	0052 0335 0481 0445 0445 0445 0499 0593 0593 0593 0593	0910 0464 0888 0899 0100 0005 0005 0005 0005 0005 0005	- 0615 - 0870 - 0870 - 0706 -	2000 2000 2000 2000 2000 2000 2000 200	0855 1257 111100 111100 10085	1640 1222 0950 0676 0660 0641 0478 0478	1108 11525 11616 11990 1127 11146 11197 11083 11092 10992	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1608 1515 1606 1514 1526 1536 1536 1444 1608	2340 2015 1689 1599 1527 1365 1274 1076 1022 0668 0769		.2701 .2391 .2155 .2046 .1764 .1664 .1491 .1318 .1245 .1127	1965 1975 1975 1926 1927 1947 1947 1940 2012	.3144 .2851 .2631 .2502 .2411 .2200 .2099 .1860 .1714 .1595 .1558	1967 1976 1976 1985 1985 1985 1988 1988 1988 1988 1988	351 302 302 303 303 303 303 303 303 303 303	1737 1792 1855 1862 1901 1955 1955 1955 1955 1955 1955	.3776 .3618 .3618 .3320 .3266 .2993 .2920 .2638 .2628 .2501 .2355 .2616	1790 1826 1899 1917 1935 2017 1989 1989 1989 1989 1989 1989	.1265 .1277 .1058 .3926 .3632 .3632 .3642 .3012 .2671 .2671 .2626
0,555	92.5 0 7.5 14.2 21.2 88.7 35.2 42.2 55.0 77.5	.1933 .0125 0204 0416 0425 0434 0471	0765 0746 0701 0709 0673	1744 0630 0221 0007 -0132 -0169 -0318 -0317	190 190 190 190 190 190 190 190 190 190	.0416 .0373 .0273 .0218 0031	.0817 - 1177 - 11623 - 11639 - 11639 - 11639 - 11887	.1077 .0760 .0633 .0487 .0451	.0450 .1588 .1733 .1796 .1811 .1850 .1579 .1507	.0251 .0414 .1966 .1512 .1185 .1040 .0659 .0604 .0577 .0242	0150 - 1578 - 1978 - 2029 - 2029 - 2029 - 1779 - 1743 - 1851	2277 1879 1527 1365 1148 1112 0940 0769	- 1212 - 2029 - 2065 - 2065 - 2065 - 2064 - 2002 - 1974 - 1884 - 1992	-0283 -2683 -2318 -1937 -1755 -1573 -1491 -1300 -1054 -0891	- 0291 - 2066 - 2076 - 2086 - 2067 - 2076	-0422 .3061 .2741 .2374 .2190 .2025 .1897	-0432 -2075 -2075 -2084	0612 .3387 .51.21 .2763 .2545 .2399 .2060	0614 1955 1937 1955 1882 1937 1991 1774	0768 .3703 .3512 .3220 .3029 .2611 .2710 .2483	- 1980	0928 -\u039 -3795 -3569 -3362 -3362 -3365 -27\u039 -2515
0,777	0 10.0 23.7 35.7 47.7 71.7 83.7	- 0590 - 0572 - 0609 - 0737	.1303 -0895 -1251 -1268 -1213 -1269 -1269	.0185 0240 0322 0322 043	.0736 1317 1551 1585 1642 1677 1669	.0327 .0128 .0001 0072	- 1596 - 1796 - 1750 - 1771 - 1860	.0726 .0492 .0293 .0275	0340 1696 1743 1508 1536 1760 1667	.0191 .1454 .1111 .0858 .0660 .0678	5 20 20 20 20 20 20 20 20 20 20 20 20 20	.1610 .1520 .1221 .1022 .0949	- 1017 - 1986 - 1968 - 1803 - 1821 - 2004	.1541	- 2095 - 2095 - 1985 - 1985 - 2113	.2295	-1364 -2151 -2151 -2060 -2078 -2206 -2133	-0610 2923 2662 2568 2273 2218 1999	- 2187 - 2187 - 2132 - 2132 - 2168	3202 3038 2938 2545 2572	1877 2790 - 2771 - 2278 - 2390 - 2390	- 0841 - 3494 - 3650 - 3310 - 2864 - 2586 - 2577

NACA RM 151H06

TOTAL BUILDINGS

TABLE I.- EXPERIMENTAL PROSCUE CONFESSION - Concluded

						_		1 -	18.3 × 1	<u>δ</u>			·				· · · · · ·	····
#be	tion	a = 0°	α =	gο	a.	ţ°	α-			= 8°	α -	70°	a.	- 12º	σ	1Å ⁰	Œ	- 16º
¥ 1√2	Par- cent	O.D.	Opu	op)	o _{po}	o _{P?}	Opa	GP ~	G _{PE}	C _P	Opm	o ^{b y}	o _{pa}	c _p ,	C _{Da}	c _p į	C _{PM}	Cp _₹
0,111	0 3.8 7.3 10.6 114.2 17.5 21.2 28.2 11.7 28.2 43.7 25.0 771.7 77.5 2 86.7 94.0	P. S.	0, 2075 - 2008 - 20071 - 2015 - 2015	0,2140 .0966 .0617 .0417 .0380 .0270 .0396 .0396 .0396 .0397 .0007	0.1911 .0027 .0250 .0250 .0251 .0351 .0351 .0356 .0351 .0563 .0563 .0563 .0563 .0563 .0563 .0563 .0563		0.1442 1.0562 1.0583 1.	0.1841 -1777 -1334 -0934 -0977 -0677 -0691 -0555 -0563 -0467 -0467 -0468 -0554 -0564 -0564 -0564 -0564 -0564 -0564	0.1421 0.0797 -0772 -0609 -0722 -0747 -0722 -0772 -0777 -0797 -0797 -0847 -0847 -0857 -08597 -0935	0,1796 .2033 .1631 .1494 .1266 .1241 .1065 .1052 .0950 .0951 .0775 .0726 .0731 .0726 .0633 .0537 .0537	0.12(1 1258 1059 0961 0955 0855 0855 0856 0956 	0,1490 .2438 .1844 .1806 .1667 .1477 .1369 .1991 .1191 .1066 .1061 .0972 .0884 .09745 .0745	0.1071 ~1372 ~1334 ~1295 ~1196 ~1197 ~1048 ~0856 ~0951 ~0961 ~0966 ~1016 ~1073 ~1073 ~1076 ~1076 ~1076 ~1076 ~1076	0.1039 .2877 .2036 .2037 .2022 .1965 .1760 .1600 .1476 .1438 .1275 .1375 .1375 .1375 .1375 .1375 .1376	0.0997 -1550 -1250 -1250 -1257 -1577 -1577 -1577 -1388 -1206 -1055 -1050 -1105	0.0805 .3333 .2653 .2653 .2511 .2195 .2246 .2031 .1955 .1854 .1766 .1608 .1463 .1463 .1463 .1463	0,1001 -1651 -1677 -1677 -1623 -1823 -1826 -1232 -1167 -1232 -1167 -1199 -1199 -1299 -1286 -1286	0.0448 .3732 .3232 .2976 .2977 .2634 .2936 .2531 .2433 .2245 .2245 .2245 .2245 .2158 .1963 .1963 .1992 .1820
0.239	0 4.8 9.2 14.7 23.2 25.2 25.2 32.7 40.2 47.5 62.7 70.2 77.5 65.0 92.5	.1799 .0358 .0012 .0051 .0120 .0189 .0214 .0271 .0377 .0377 .0377 .0377 .0377 .0377 .0377	1600 10052 10052 10054 10059 10059 10059 10059 10059 10059	.1855 .0799 .0454 .0267 .0267 .0264 0069 0069 0069 0069 0069 0069	.1111 0593 0770 0646 0558 0566 0666 0666 0733 0735 0606 0795	.0810 .1236 .0860 .0608 .0545 .0536 .0366 .0367 .0374 .0860 .0862 .0000	.0998 .097.1 .1229 .1267 .11100 .1002 .0927 .0870 .0870 .0870 .0877 .0877 .0877 .0877 .0877 .0877 .0877 .0877 .0877 .0877	.1662 .1606 .1205 .0954 .0957 .0663 .0478 .0478 .0493 .0311 .0311 .0311	.018 -1323 -1523 -1624 -1617 -1310 -1310 -1191 -1193 -1098 -1016 -1066	.1347 .1950 .1992 .1334 .1234 .1190 .0099 .0763 .0775 .0592 .0519 .0335	~ 0113 ~ 1636 ~ 1794 ~ 1869 ~ 1585 ~ 1585 ~ 1560 ~ 1674 ~ 1642 ~ 1642 ~ 1658 ~ 1058 ~ 1058 ~ 1058	.1174 .2246 .2025 .1729 .1641 .1553 .1362 .1300 .1064 .1061 .0965 .0909 .0909 .0669	では、 では、 では、 では、 では、 では、 では、 では、	.0908 .2687 .2373 .2134 .2034 .1957 .1663 .1437 .1318 .1261 .1136 .1136 .0859	- 05/7/ - 1957 - 2057 - 2057 - 2057 - 2057 - 2050 - 1950 - 1950 - 2052 -	.06/79 .3022 .27/45 .2331 .2113 .2125 .2125 .2027 .1775 .1737 .1666 .1554 .1517 .1447	~0753 ~1971 ~1971 ~1975 ~1995 ~1995 ~2002 ~2002 ~200 ~200 ~210 ~200 ~210 ~21	.04.99 .34.02 .32.01 .2966 .2860 .2784 .2545 .2457 .2173 .2198 .2091 .1899 .1770 .1713 .1385
0.555	0 7.5 14.2 21.2 25.7 25.2 42.2 55.0 77.5	.1894 .0119 -0233 -0428 -0435 -0447 -0466 -0544 -0516	.1710 -0335 -0751 -0884 -0821 -0806 -0745 -0758 -0739 -0621	.1802 .0660 .02(1 .0032 0032 0146 0267 0317 0380	.1325 ~0770 ~1162 ~1339 ~1339 ~1374 ~1042 ~0985 ~0996	.1478 .1144 .0581 .0406 .0377 .0154 -0035 -0032	650 61149 61	.0927 .1550 .1092 .0766 .0664 .0516 .0478 .0276 .0271	.0494 -1592 -1790 -1793 -1630 -1605 -1630 -1592 -1530 -1660	.0435 .1931 .1498 .1164 .1026 .0838 .0761 .0611 .0555	.0190 1862 1958 2009 2009 1888 1794 1756 1862	.0014 .2308 .1905 .1552 .1388 .1174 .1136 .0960 .0777 .0693	- 2004 - 2000 - 2025 - 1993 - 1917 - 1957 - 1764 - 1911	-0896 -2555 -2904 -1921 -1751 -1556 -1466 -1035 -0664	-,0270 -,2067 -,2062 -,2056 -,2056 -,2018 -,2056 -,2051	-0468 -2959 -2644 -2265 -2127 -1913 -1819 -1624 -1902 -1164	-,04,37 -,2083 -,207,6 -,2064 -,207,6 -,207,0 -,21,02 -,21,02 -,21,02	7,0620 ,3352 ,3067 ,2747 ,2532 ,2343 ,2179 ,2028 ,1967 ,1517
0 -77 7	0 10.0 25.7 35.7 47.7 71.7 83.7	.1586 0353 0663 0779 0816 0816	.1396 0896 1142 1149 1212 1250 1237	.1341 .0142 ~0245 ~0332 ~0432 ~0452 ~0507	.0755 1311 1531 1525 1569 1650 1632	.0847 .0602 .0295 .0094 0092 0070	.0070 -,1609 -,1765 -,1664 -,1721 -,1834 -,1797	.0450 .1065 .0707 .8492 .0382 .0272 .0076	0421 1887 1824 1837 1862 1987	.0198 .1455 .1128 .0851 .0663 .0550	~0729 ~1970 ~1995 ~1856 ~1860 ~2014 ~1945	.0061 .1819 .1541 .1250 .0947 .0997	-1036 -1963 -1971 -2037 -2050 -1971 -1863	-,0587 .1967 .1775 .1426 .1213 .1113	~.1369 ~.2059 ~.2047 ~.1860 ~.1673 ~.2059 ~.1572	-0333 -2499 -2423 -1966 -1841 -1664 -1551	- 1390 - 2058 - 2142 - 1911 - 1911 - 2064 - 2000	~0672 .2846 .2596 .2433 .2233 .2083 .1645

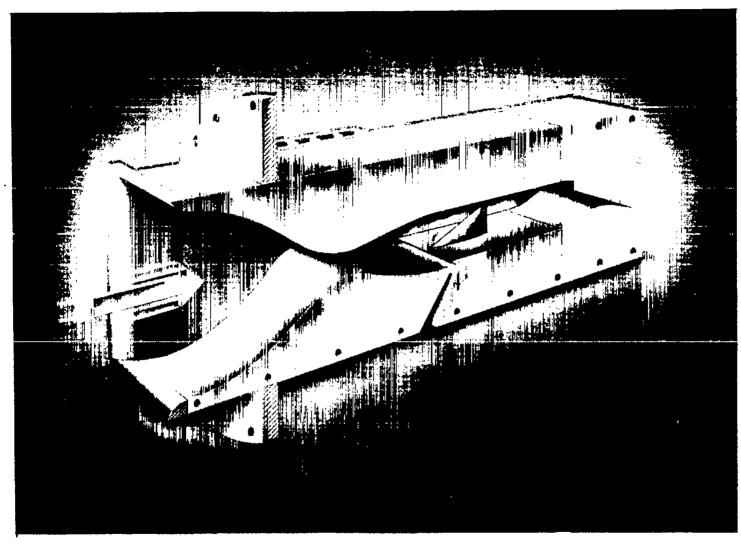


Figure 1.- M = 2.41 jet.

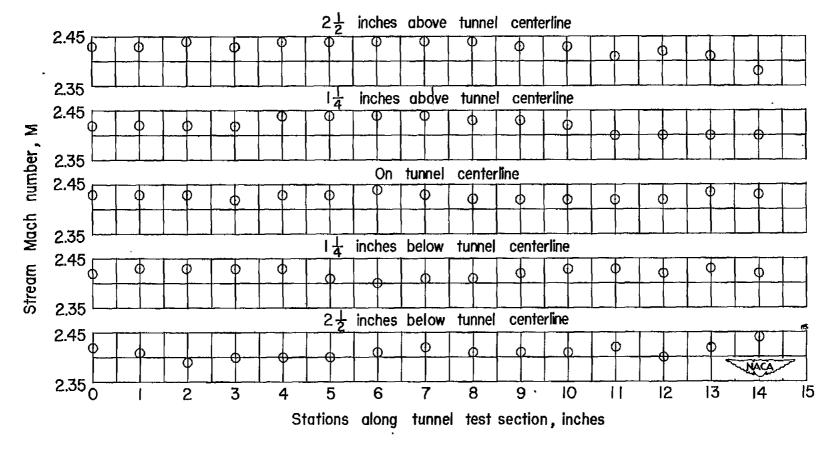
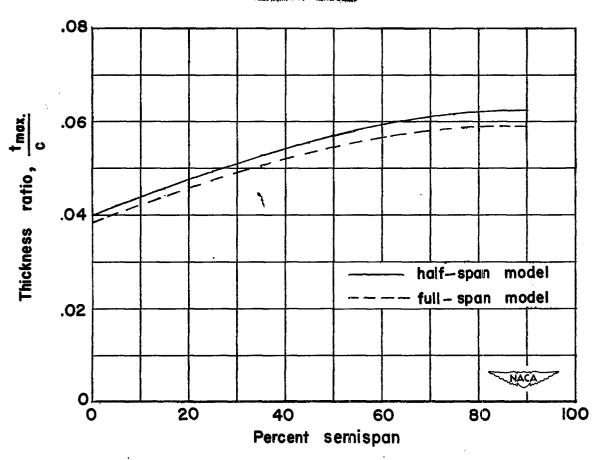
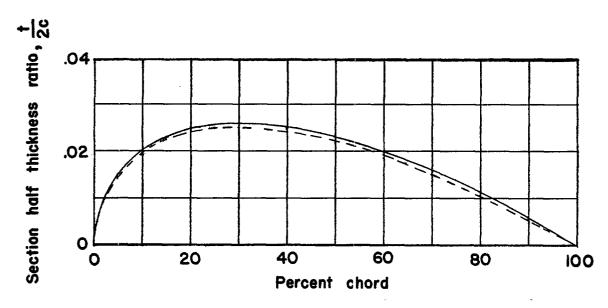




Figure 2.- Mach number distribution in the M = 2.41 blowdown jet test section.

(a) Spanwise variation of thickness ratio.

(b) Section shape at 0.333b/2.

Figure 3.- Wing-section properties.

Figure 4.- Dimensional sketch of semispan triangular wing.

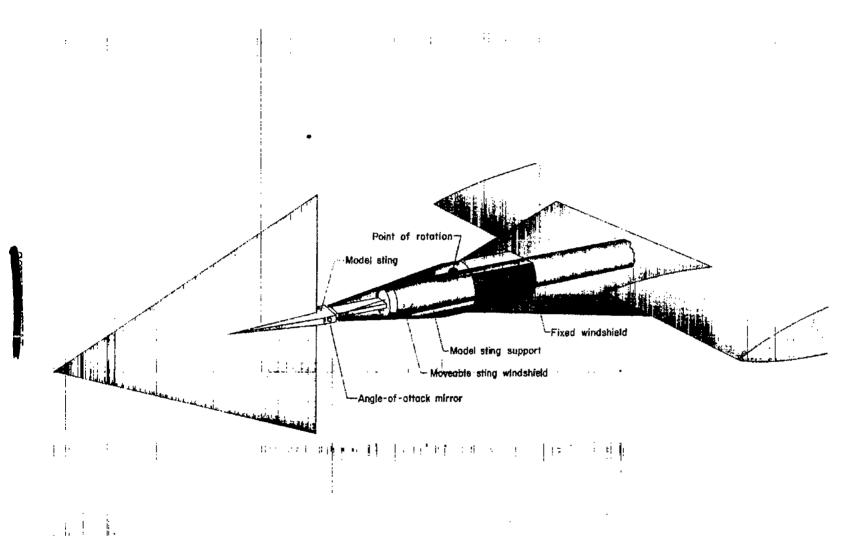


Figure 5.- Full-span wing mounted on sting.

MACA

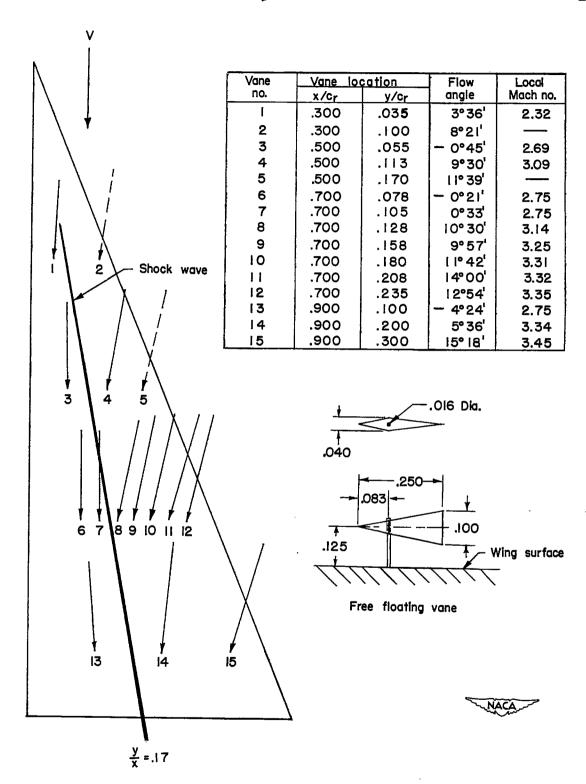


Figure 6.- Local flow direction on wing upper surface as determined from vane survey. $\alpha = 10^{\circ}$; $R = 1.04 \times 10^{6}$.



Figure 7.- Variation of wing aerodynamic characteristics with angle of attack for different Reynolds numbers.

TEN TEN TEN TEN

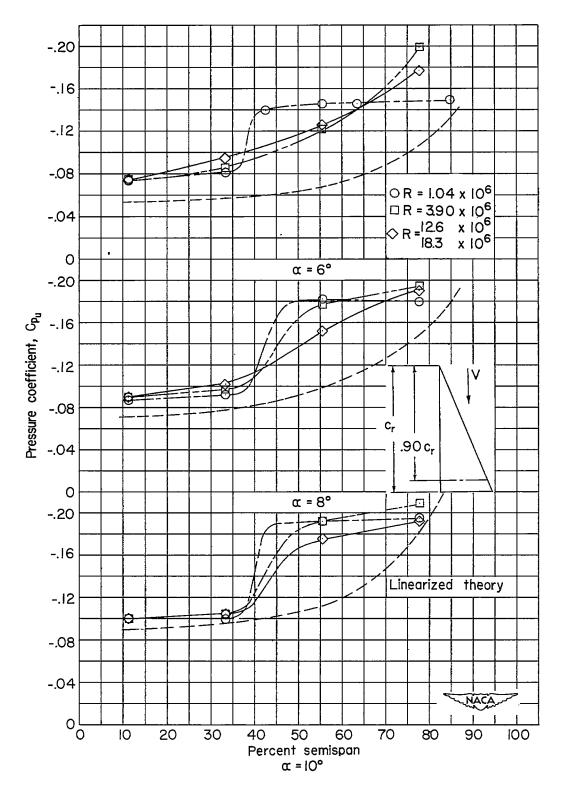
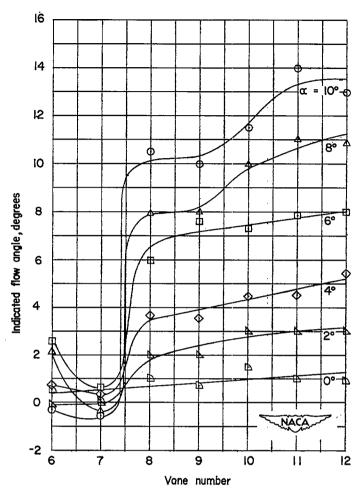
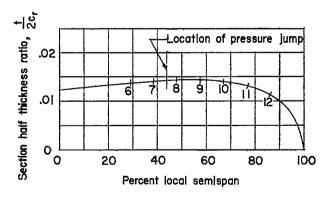




Figure 8.- Spanwise variation of upper-surface pressure coefficient at 0.90cr at different Reynolds numbers.

(a) Indicated flow angles.

(b) Vane locations on wing profile.

Figure 9.- Results of vane survey on wing upper surface at 0.70c, station. $R = 1.04 \times 10^6.$

COMPENSAL

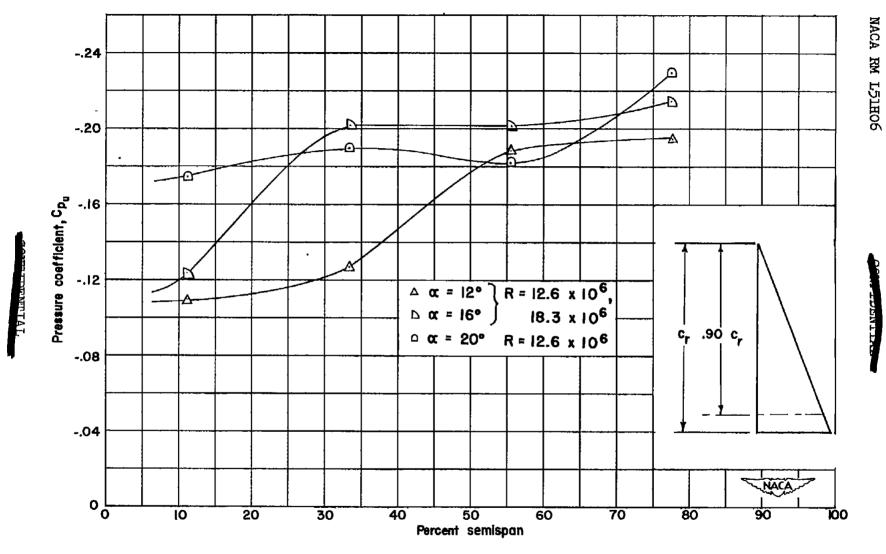
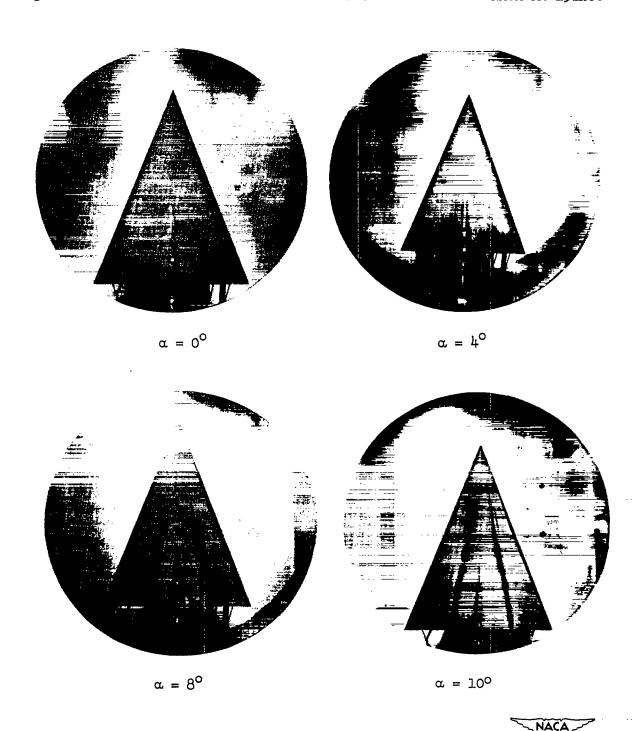



Figure 10.- Spanwise variation of upper-surface pressure coefficient at $0.90c_{T}$ at high angles of attack.

L-70795 Figure 11.- Liquid-film pictures of wing upper surface at R = 1.04×10^6 .

.5

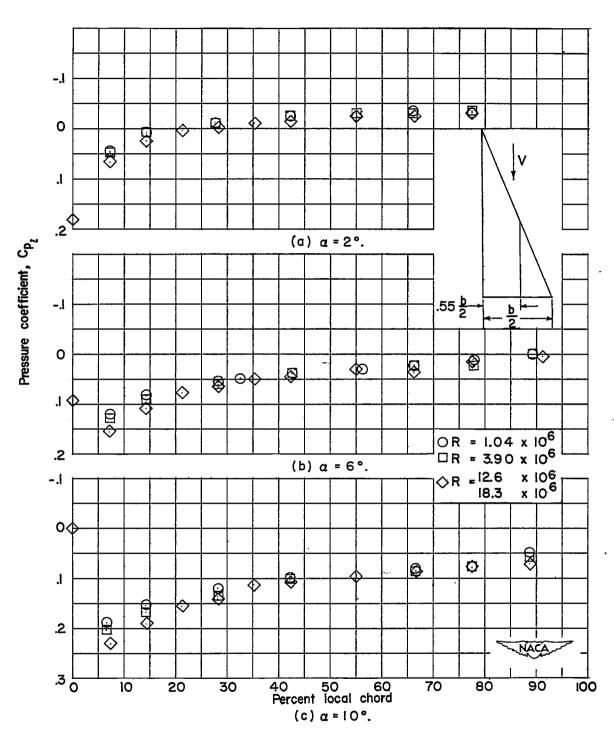


Figure 12.- Chordwise variation of lower-surface pressure coefficient at 0.55b/2 at different Reynolds numbers.

COMMENTS

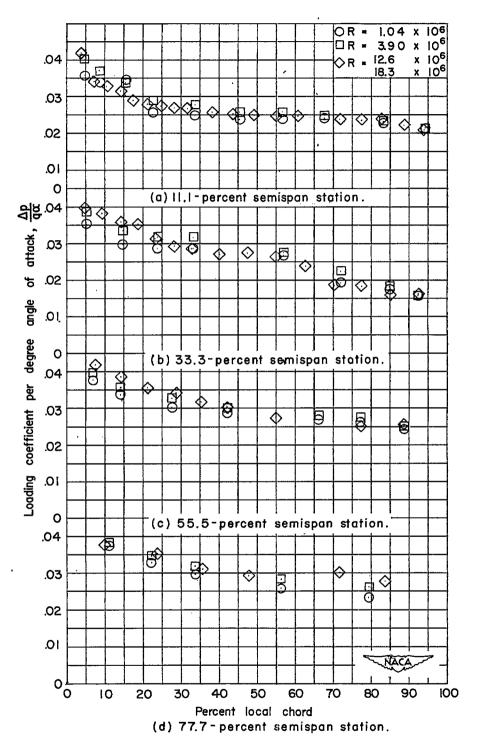


Figure 13.- Chordwise variation of wing loading coefficient at different Reynolds numbers for $\alpha = 10^{\circ}$.

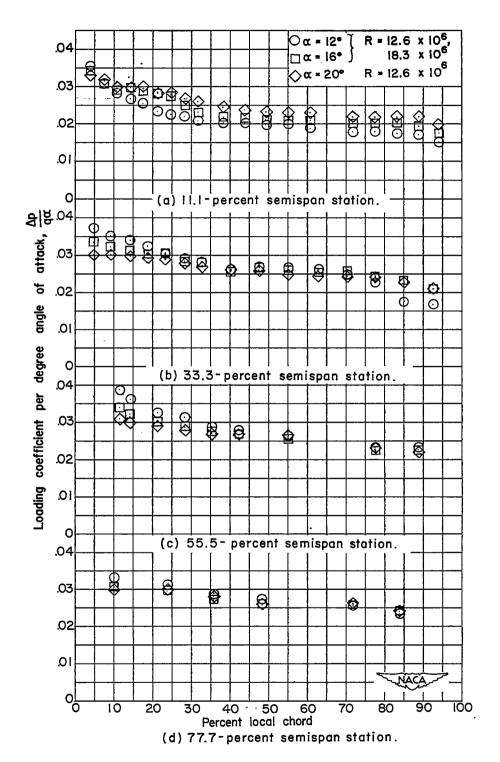


Figure 11.- Chordwise variation of wing loading coefficient at high angles of attack at Reynolds numbers of 12.6×10^6 and 18.3×10^6 .

OR = 1.04 x 106

NACA RM L51H06

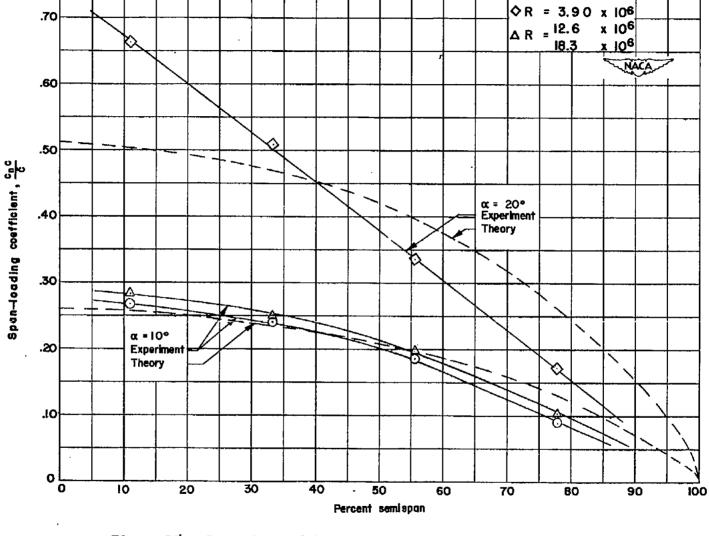


Figure 15.- Comparison of theoretical and experimental spanwise load distribution at different Reynolds numbers.